1. Introduction

1.1. Information Retrieval and Web Search Engine:

1.1.1. 7& X: Examines key aspects of information retrieval as they apply to search engines;
web crawling, indexing, querying and quality of results

1.2. Whole process overview

Request

Respone

PageRank

Representation
1.2.1. SR 2 B e 55 A i fe:
1.2.1.1. user[f]systemif =K 5L query, system R ¥z index 3k 75X N Fraw content?X fiz i
[0]%5 user. query-> index -> raw contentf i #2 #7 Ayprocessed; index X Fr N

representation.
1.2.1.2. System/tliﬂ}@lﬁﬁ‘ﬂlﬁﬁ&ﬁraw content, £ — P raw contentX I — > index {7 #C
e, XN FR FTHE & insert, deleteE # update.

1.2.1.3. 1.2.1.1%n1.2.1.275ﬁ/|\§7\%uE’Jm& HFEZ ARSI BT,
1.2.1.4. Processedft’) B 19: JisE 8 58 B

2. Search Engine Basics

2.1. Search Engine Elements

2.1.1. Spider (a.k.a. crawler/robot) - builds corpus(4E 415 £+%): Collects web pages

recursively
2.1.2. The indexer — creates inverted indexes

2.1.3. Query processor — serves query results: Front end and Back end

2.2. Query Processing

2.2.1. Semantic analysis of the query includes

2.2.1.1. Determining the language of the query (Ifi € 1E =)
2.2.1.2. Filtering of unnecessary words from the query (stop words) (f215 = i) 25 151)
2.2.1.3. Looking for specific types of queries, e.g. (fRHEqueryH i id 77 2)
e Personalities (triggered on names)
e (ities (travel info, maps)
e Medical info (triggered on names and/or results)
e Stock quotes, news (triggered on stock symbol)
e Company info ...
2.2.1.4. Determining the user’s location or the target location of the query (Ff J* 11 5)
2.2.1.5. Remembering previous queries (F J' [52 {fi 4f)
2.2.1.6. Maintaining a user profile (1% A% SZ 44 A F* SCRY)
3. Crawlers and Crawling

3.1. 7E: A web crawler is a computer program that visits web pages in an organized
way

3.2. Web Crawling Issues

3.2.1. How to crawl?
3.2.1.1. Quality: how to find the “Best” pages first (— f% I BFSIfi /1~ /& DFS)
3.2.1.2. Efficiency: how to avoid duplication
3.2.1.3. Etiquette: behave politely by not disturbing a website’s performance
3.2.2. How much to crawl? How much to index? (crawlig =1Lk 1))
3.2.2.1. Coverage: What percentage of the web should be covered?
3.2.2.2. Relative Coverage: How much do competitors have?
3.2.3. How often to crawl? (crawl/& ZE (L £ 1)
3.2.3.1. Freshness: How much has changed?
3.2.3.2. How much has really changed?

3.3. Simplest Crawler Operation (crawling/iif2)

3.3.1. Initialize (begin with known “seed” pages) (source code)
3.3.2. Loop: Fetch and parse a page (/f] queuesl % stack4E)
3.3.2.1. Place the page in a database
3.3.2.2. Extract the URLs within the page
3.3.2.3. Place the extracted URLs on a queue
3.3.2.4. Fetch a URL on the queue and repeat

[PERE7

3.4.1. CrawlingJid 2 7] Lldistributed (7] LLALBR K HHE)
3.4.2. Challenges

3.4. Crawling)RE SUFNTE |

3.4.2.1. Handling/Avoiding malicious pages
e Some pages contain spam
e Some pages contain spider traps — especially dynamically generated pages
3.4.2.2. Even non-malicious pages pose challenges
e Latency/bandwidth to remote servers can vary widely
e Robots.txt stipulations can prevent web pages from being visited
e How can one avoid mirrored sites and duplicate pages
3.4.2.3. Maintain politeness — don’t hit a server too often
3.4.2.4. Robots.txt: The website announces its request on what can(not) be crawled by

placing a robots.txt file in the root directory
* Example: Disallow 1 & (1 B P40 € HURAE Vi 1 1

robots.txt for htep://www.example.com/

User-agent: *

Disallow: fcyberworld/map/ # This is an infinite virtual URL space
Disallow: /tmp/ # these will soon disappear

Disallow: /foo.html

3.5. Crawling Algorithm

Initialize queue (Q) with initial set of known URL’s.
Loop until Q empty or page or time limit exhausted:
Pop a URL, call it L, from the front of Q.
If L is not an HTML page (e.g. .gif, .jpeg,)
continue the loop
If L has already been visited, continue the loop.
Download page, P, for L
If cannot download P (e.g. 404 error, robot excluded)
continue loop
Index P (e.g. add to inverted index and store cached copy)
Parse P to obtain list of new links N.
Append N to the end of Q
End loop

3.5.1. BFS (FIFO4c i3t 5t). b a5 -k & H I BFS, H 4R 45 #) /2 queue
3.5.2. DFS (LIFO/fE # 5c H): FF b i 1 B9 28 45 S stack gk 2 DFS

3.5.3. Heuristically ordering (/5 & HEf7): HRYE—LLREE RIS RS T — N ERY W 1L 3t
1THER(e.g. A document that changes frequently could be moved forward)

3.6. Avoiding Page Duplication

3.6.1. To determine if a URL has already been seen:

3.6.1.1. Must store URLSs in a standard format (discussed ahead)
3.6.1.2. Must develop a fast way to check if a URL has already been seen
3.6.2. To determine if a new page has already been seen,
3.6.2.1. Must develop a fast way to determine if an identical page was already indexed

3.6.2.2. Must develop a fast way to determine if a near-identical page was already indexed

3.7. Representing URLS

3.7.1. [URLKZ K T, [ELHEAF AR 9 2210).
3.7.2. J7i£1: To determine if a new URL has already been seen
3.7.2.1. hash on host/domain name
3.7.2.2. Use a trie data structure (7-HL4) to determine if the path/resource is the same
as one in the URL database
3.7.2.3. EBE LB DURLE S E R 5 BN TR, & 24 0(nk), ni
URL/M%, k& URLA KK JE
3.7.2.4. H TtrieZ A E 2= OK)
% Example of tire:
viterbi.usc.edu

fcs /ee /chem

/people /courses - /people /courses /people- /courses

3.7.3. J51£2: URLs are sorted lexicographically and then stored as a delta-encoded text
file
3.7.3.1. Each entry is stored as the difference (delta) between the current and
previous URL; this substantially reduces storage
3.7.3.2. However, restoring the actual URL is slower, requiring all deltas to be applied
to the initial URL
3.7.3.3. To improve speed, checkpointing (storing the full URL) is done periodically

3.8. Normalizing URLs

3.8.1. Why Normalizing URLSs is Important? 1R 2 #H{LLi¥link#5 [A] [F]— N pagefH & — H.
Al A — AR AT] A hash B BE 23 R[] (e.g. http://www.google.com;
http://www.google.com/; https://www.google.com)

3.8.2. 4 rules of Normalizing URLSs

3.8.2.1. Convert the scheme and host to lower case. The scheme and host components
of the URL are case-insensitive.

% Example: HTTP://www.Example.com/ — http://www.example.com/
3.8.2.2. Capitalize letters in escape sequences. All letters within a percent-encoding

triplet (e.g., "%3A") are case-insensitive, and should be capitalized.

% Example: http://www.example.com/a%c2%b1b —
http://www.example.com/a%C2%B1b
3.8.2.3. Decode percent-encoded octets of unreserved characters.

% Example: http://www.example.com/% 7Eusername/ —
http://www.example.com/~username/
3.8.2.4. Remove the default port. The default port (port 80 for the “http”” scheme) may be

removed from (or added to) a URL.

% Example: http://www.example.com:80/bar.html —
http://www.example.com/bar.html

3.9. Avoiding Spider Traps

3.9.1. Spider TrapsiE X : A spider trap is when a crawler re-visits the same page over
and over again

3.9.2. fi WLAYSpider Trap: The most well-known spider trap is the one created by the use
of Session ID’s. A Session ID is often used to keep track of visitors, and some sites puts
a unique ID in the URL ({&] 8 > {5 b /2 f5 A~ ™ 7 [7] R IS 2 45— AN ID, A I X
DRYURLEY 5y, FTAan R A R A X — oy gh o il 8 dy— (i #E 8 (£ 17 i)
— T

% Example: www.webmasterworld.com/page.php?id=264684413484654
3.9.3. fRRITik:

3.9.3.1. For the crawler to be careful when the querystring “ID=""is present in the URL

3.9.3.2. Monitor the length of the URL and stop if the length gets “too long”

3.10. Handling Spam Web Pages

3.10.1. Web Spamf¥) &&:

http://www.google.com
http://www.google.com/
https://www.google.com

3.10.1.1. The first generation of spam web pages consisted of pages with a high number of
repeated terms, so as to score high on search engines that ranked by word
frequency

3.10.1.2. The second generation of spam used a technique called cloaking: When the web
server detects a request from a crawler, it returns a different page than the
page it returns from a user request. The page is mistakenly indexed.

3.10.1.3. A third generation, called a doorway page, contains text and metadata chosen
to rank highly on certain search keywords, but when a browser requests the

doorway page it instead gets a more “commercially oriented” (more ads) page

(EIPN 2 B 171 7 R G, 2 FO B 2o HEHERY I TT)

3.11. Distributed Crawling

3.11.1. Multi-Threaded Crawling: One bottleneck is network delay in downloading
individual pages. It is best to have multiple threads running in parallel each requesting
a page from a different host. (TE—FEHLaF L2 L FENE H)

3.11.2. Distributed Crawling Approaches:

3.11.2.1. A centralized crawler controling a set of parallel crawlers all running on a LAN
3.11.2.2. A distributed set of crawlers running on widely distributed machines, with or
without cross communication (MapReduce)
3.11.3. If crawlers are running in diverse geographic locations, how do we organize them?
— Distributed crawlers must periodically update a master index (But incremental
update is generally “cheap” because you need only send a differential update)
3.11.4. flLa:
3.11.4.1. scalability: for large-scale web-crawls
3.11.4.2. costs: use of cheaper machines
3.11.4.3. network-load dispersion and reduction: by dividing the web into regions and
crawling only the nearest pages
3.11.5.
3.11.5.1. overlap: minimization of multiple downloaded pages
3.11.5.2. quality: depends on the crawling strategy
3.11.5.3. communication bandwidth: minimization

3.11.6. Distributed Crawling — i 511

3.11.6.1. Independent: no coordination, every process follows its extracted links (FT A 7

ANTFHI AR 55w BARTE H) 5 JF-AY IS5 75 2 deduplication, Very Fast)

3.11.6.2. Dynamic assignment: a central coordinator dynamically divides the web into
small partitions and assigns each partition to a process (— > EHLAK B A A
1R B 5T ML link, HEJRE 9% duplication, [@ = AL T REfail)
3.11.6.3. Static assignment: Web is partitioned and assigned without a central coordinator

before the crawl starts (£/I€ th . ik 4[5 & A U5 [l link 44 5, S 55 ZEBh 25 1

BT AR5 2 3 HL)
% Note: XﬁE\E*}L Master Node Master Node
Static assignment —
ﬁu{ifﬁg@?{(IEI BSP Master Job Tracker

partitionZ [
linksHE? — BSPHL Hama
iill. F1MapReduce
AIRIEYSEBSPH!

Ll‘f?é*ﬁ,mZIEﬂ_f
E’E%Uﬂﬂ#é’ﬂﬂ%
kAT SR A0 RE B A (] AA DX A [R] Ml X2 18] A9 2 Jey 2 AL AR IR 22 1)

MapReduce

Task

Tracker SaElids

Reduce
Tasks

% Example: 45 & 0 5 Partition 1 Partition 2
Partition2 Z f" ghi &2 it 25 ' .
Partition], B ghi#l & 2 /2
W2, RIE R fgrYiEsz.
(EEXBRREB M AR E
ifill, N #R = 1E Bl duplication)

3.12. Keeping Spidered Pages Up to Date

3.12.1. Periodically check crawled pages for updates and deletions: Just look at LastModified
indicator(fEmetadata™") (@: fix % FEE|— > W 71 A LastModified7E HL AL, &
ARy index £ F A EcH A HL LAY b — U T€ B AR AT, IRFRIR YA~ 75 Zupdate;
i B F e 2] — K 51 LastModified (E 53 81 i, 1 indexdt REFY b — R TE H 1R
Ail, ARFk Bk 75 Zupdate)

3.12.2. Track how often each page is updated and preferentially return to pages which are
historically more dynamic. (5 G HL25 7), MR8 AS [R] T1 52 8T A 40 =2 ok % (& AR
JS7 P T H B AR)

3.12.3. When a crawler replaces an old version by a new page, does it do it “in-place” or
“shadowing”? (“in-place” i R 37 5 B2 822 Ailindex X} LY N Z¥, “shadowing” i)

T R R AN B[R] BE PN B IX AN link R T A3 58 B0 SE A7 7E — N temp index HL, B3R HEAS
B (8] 5 P78 25 2L E A index I N 4F) — 1X /& Pavailability fllconsistencyt)
tradeoff. “in-place” 7] LLfR1IF consistency, ik & FH ' R B I N AR — €S2 i
BT, (BRI S AR RN e 5 — B B BTN 1 “shadowing”] LLARAE
availability, K9 7E 5N 8] BEH P 2) B9 N 2548 /& old version, A~ 75 A& Sl PL
R E AR, (B consistencyit 1~ BEIRIE T .

3.13. Conclusion

3.13.1. Running multiple types of crawlers is best

3.13.2. Updating in-place keeps the index current

4. Search Engine Evaluation

4.1. Precision, Recall, F1-score

o TP
precision = —————
Predicted IP + FP
Negati Positi i P
egative ositive recd = —
= : = TP+ FN
P Negative True Negative False Positive 5 o ecall
Positive False Megative True Positive Fl = X precision X reca.
precision + recall
. |{relevant documents} N {retrieved documents}|
precision = -
|{retrieved documents}|
1 \{relevant documents} N {retrieved documents}|
recall =
|{relevant documents}|
4.1.1. relevantf517) /2 B 52 4H % (actual true), retrieved &\ NHH X (predicted true)
4.1.2. Fl-score(F-measure) & PrecisionfIRecall’Jharmonic mean
2
F1 Score =

1 1 =
Precision + Recall .

2 x Precision X Recall .
= Harmonic _ n

Precision + Recall Mean Farmula ~ (L 1.1 _)
X Xz ¥z T Xn

4.1.3. You can get high recall (but low precision) by retrieving all docs for all queries! (%
o PR, Q0 R AR AT A does s 1 7 B — A AR 1Y, (HZ A T X,
precisionfR 1K)

4.1.4. In a good system, precision decreases as the number of docs retrieved (or recall)
increases (GH L ¥ 5L B &5, VA RIS IKHR)

1 k=n
mAP = AZ AP,
n
k=1
AP, = the AP of class k
n = the number of classes

4.2. Mean average precision

% Example:

l . l . l = relevant documents for query 1
g [l | /I IBE

Recall 02 02 04 04 04 06 06 06 08 1.0
Precision 1.0 05 067 05 04 05 043 038 044 05

. l . = relevant documents for query 2
Sorasll 10N 18] 18BN

Recall 0.0 033 0.33 0.33 067 067 1.0 10 10 1.0
Precision 0.0 0.5 0.33 0.25 04 0.33 043 0.38 0.33 03

average precision query 1 = (1.0+0.67+0.5+0.44+0.5)/5 = 0.62
average precision query 2 = (0.5+0.440.43)/3 = 0.44

mean average precision = (0.62+0.44)/2 = 0.53

4.2.1. mAPHJR AL
4.2.1.1. Each query counts equally
4.2.1.2. If arelevant document never gets retrieved, we assume the precision
corresponding to that relevant doc to be zero (this is actually reasonable)
4.2.1.3. mAP assumes user is interested in finding many relevant docs for each query

4.2.1.4. mAP requires many relevance judgments in the document collection

4.3. Discounted Cumulative Gain (DCG)

4.3.1. JE 3 : Highly relevant documents appearing lower in a search result list should be
penalized as the graded relevance value is reduced logarithmically proportional to the

position of the result

432. n72:DCG

AL IE b SCRY AR O (18 5 15 UL T S rank)

p = i; log (i+1)

P rel
2 -1

, H P p A — D EERIN R A PR AL

,rel REE

% Example: [B8R BN6 45 R, HAH A 53 805311 723,2,3,0,1,2. SKDCG

i rel; log2(i+1) rel;/ log2(i+1)
1 3 1 3

2 2 1.58 1.26

3 3 2 1.5

4 0 2.32 0

5 1 2.58 0.38

6 2 2.8 0.71

DCG=3+1.26+1.5+0+0.38+ 0.71 = 6.86

4.4. Normalized Discounted Cumulative Gain (nDCGE€|0,1])

4.1. &S TEREEE B T A AE S SCRS RO FE SR, £
FRNIDCG. Xt F—> Query, n(DCGHIAHnDCG =

% Example:

I 1 A2 B R T HERY DCG,

N L IR @, B FAT TS bR A B T84 SOy, bR T a6, A W
ANEEF AR TN N3, 558N H M N0, AR FEBRARE I T B9 AH S o0 4%
HEFE N %42 3,3,3,2,2,1,0,0. i+ EIDCG

i rel; log2(i+1) rel;/ log2(i+1)
1 3 1 3

2 3 1.58 1.89

3 3 2 1.5

4 2 2.32 0.86

5 2 2.58 0.77

6 1 2.8 0.35
IDCG@6 =3 + 1.89 + 1.5 + 0.86 + 0.77 + 0.35 = 8.37

nDCG = —=5_ = 25 — (819

IDCG@6 837

4.5. Search engines also use non-relevance-based measures

4.5.1. Click-through on first result (G /R HEZS H P #9link A 7% A 8¢ H 7 st %)
4.5.2. A/B testing: comparing two versions of a web page to see which one performs better.
You compare two web pages by showing the two variants (let's call them A and B) to

similar visitors at the same time. The one that gives a better conversion rate, wins!

5. Deduplication

5.1. & X: De-duplication essentially refers to the identification of identical and nearly

identical web pages and indexing only a single version to return as a search result

5.2. Mirroring: i/ ¥5. Mirroring is the single largest cause of duplication on the web.
7E X : Host1/a and Host2/b are mirrors if and only if for all paths p(FTH 1M 1),

http://Host1/a/p 1E1E, http://Host2/b/p WAFLE, 7 HANE JLTF-FHE.

5.3. Duplication problems’;35:

5.3.1. Duplicate Problem: Exact match(52 4= VCHc):
5.3.1.1. fi#kJ5 %2 compute fingerprints using cryptographic hashing(e.g. MD5)
5.3.1.2. Useful for URL matching and also works for detecting identical web pages
5.3.1.3. Hashes can be stored on sorted order for logN access(.77 1 5%)
5.3.2. Near-Duplicate Problem: Approximate match(:/T{LL#H [F])
5.3.2.1. fi#ik J5ZE: compute the syntactic similarity with an edit-distance measure, and
use a similarity threshold to detect near-duplicates (e.g. FA{ELFE>80% kA AT 1EL
FATAT)

54. @ Shingling 6 I P14 TS A5 AH [2

5.4.1. Shingling#f.&: k-shingle (k-grams) & i5 SCRY H 3% 4L HH B k DT R R 5]
% Example: k=2, document D,=abcab, 2-shingles S(D,) = {ab, bc, ca}, IX EHIS(D,)/&—
ANED
5.4.2. BLCHIEkZ DG 2 — N S HESIEUE buckets B R AN RIR AUk
% Example: % FATH 20 A[F Y F4F, shinglest) B BEF /N Bk 2205, HR 2. BLAEFL
1%} He4-shingles4f it f&9-shingles 4
e 4-shingles: FREMIHEFI/NHCN20%=2"73, 9-shingles: A] BEMIHES 4L N20°=2%

http://host1/a/p
http://host1/a/p

o {R&EFATHhash tablen(bucket) Hint>RK A7, — N intA) 7 [7£0~27-1

* FeA 15 A 2 FH9-shingles[K 4 20 2 F 411 FH 4-shingles, &Y
A2 (2173<<2%), Bl T A AR 2 0 A 22 (A BRI . 11 9-shingles AT A AT REZE tb
22K, HXARE T RIRS, Xl)t H AE#12%hashf§ 2%
I freth 2= TEAR 2 B DL T e A ik

5.4.3. Jaccard similarity: Szm(C C) '|_| 1U52|
1 2

5.4.4. Jaccard distance: Jaccard Distance = 1 — Jaccard Similarity
5.4.5. |Wrduplicationijii f2:
5.4.5.1. XFEEAS I TN ZE plk-shingles, £/ 01447 5 — DN EE A
5.4.5.2. FHEAEES PRI shinglesy Ji hash/ihash values
5.4.5.3. JE 1‘ [F] B e S i 0k HH A5 N 4R B WP Y —£Ehash values(aka. fingerprints).
FEIE A TR 43 e B SR I vt SR) Frn 4= [
5.4.5.4. %Ji X L fingerprints 11 % jaccard similarity, — /MR & 19jaccard similarity 5t 5
JR T IX 5 7Tk duplicated (J(fingerprint(4), fingerprint(B)) > k, the
pages are similar)

% Example:

Original text

“Tropical fish include fish found in tropical environments around the world, including
both freshwater and salt water species”

All 3-shingles (there are 16 of them)

— (Tropical fish include), (fish include fish), (include fish found), (fish found in), (found in
tropical), (in tropical environments), (tropical environments around), (environments
around the), (around the world), (the world including), {(world including both), (including
both freshwater), (both freshwater and), (freshwater and salt), (and salt water), (salt water
species)

Hash values for the 3-shingles (sets of shingles are large, so we hash them to make them
more manageable, and we select a subset)

— 938, 6064, 463, 822, 492, 798, 78, 969, 143, 236, 913, 908, 694, 553, 870, 779

Select only those hash values that are divisible by some number, e.g. here are selected
hash values using 0 mod 4

— 664,492, 236, 908, these are considered the fingerprints

Near duplicates are found by comparing fingerprints and finding pairs with a high
overlap

5.5. @t SimHash 5 P I 0T A2 75 AR [F]

5.5.1. SimHash#1 ifihashi) X Jjil|: documents that are nearly identical have nearly
similar fingerprints that differ only in a small # of bits. In other words, similar

inputs lead to similar outputs (hash values), hence 'Sim'Hash; other hashing techniques,

eg. MD5, do not have this property (in other words, even a tiny change in the input
leads to a huge change in the output). ({& #3415 it & SimHash 7 72 71 /)N 1) SUARTS:
Z|{¥Jhash valueFH 1)

% Example:

A hash function usually hashes different values to totally different hash values; here is an
example

p1 = "the cat sat on the mat'

P2 = "the cat sat on a mat'

p3 = 'we all scream for ice cream'
pl.hash => 415542861

p2.hash => 668720516

p3.hash => 767429688

Simhash is one where similar items are hashed to similar hash values
(by similar we mean the bitwise Hamming distance between hash values is small)

pl.simhash => 851459198
00110010110000000011110001111110
p2.simhash => 847263864
00110010100000000011100001111000
p3.simhash => 984968088
00111010101101010110101110011000

in this case we can see the hamming distance of the similar items (p1,p2)=4 is small
whereas (p1,p3)=16 and (p2,p3)=12 are considerably larger

5.5.2. fllfrduplicationift F2:
5.5.2.1. comparing SimHash values is a great way to identify near-duplicates for 'n'
documents, comparing them all pairwise would take a long time [O(n?)]
5.5.2.2. as a shortcut, we can sort their decimal representations and only compare
adjacents - this will identify similarities based on low-end bits; but this will miss
similarities based on the higher-end bits; as an aside, we can look for one more
possible low-bits near-duplicate by comparing the top-most and bottom-most

values too, like in Gray Code (Gray Codel) 55 55U Al g 4> bl L —

L. —
(LA R HY)
h[3:0] g[3:0]
oo0oaon oo0oao0
ooo 1 ooao 1
oo 1.0 oo 11
oo 11 oo 10
o1 00 o1 10
o101 o1 11
Binary o1 10 oo Gray
Caode o1 11 01 00 *— cgde
1 0 00 1 1 00
1001 1 1 01
1 0 1 0 1T 1 1 1
1011 1 1 10
1 1 00 1 0 1 0
11 01 1011
11 1 0 1001
1T 1 1 1 1 000

5.5.2.3. To fix the problem of missing finding high order bit similarities, we can rotate all
the docs' bits identically to the right (so that the high order bits (left) become a
'bit' (lol) lower) to produce 'new' hashes, sort *those*, compare for
near-duplicates

5.5.2.4. we can progressively spin right by 1 bit, 2 bits, 3 bits... to discover more and more
similarities [we will rediscover existing similarities but ignore those]

5.5.2.5. note that we can rotate left as well

5.5.2.6. doing the above is O(n) + O(nlogn) = O(nlogn) < O(n*)

% Example:

consider the eight numbers and their bit representations if we sort them

1 37586 1001001011010010 4 934 0000001110100110

2 50086 1100001110100110 7 <-=(this column lists hamming 3 2648 0000101001011000 9
3 2648 0000101001011000 11 distance to previous entry) 6 2650 0000101001011010 1

4 934 0000001110100110 9 1 37586 1001001011010010 5
5 40957 1001111111111101 9 8 40955 1001111111111011 6
6 2650 00001010010110109 540957 1001111111111101 2
7 64475 1111101111011011 7 2 50086 1100001110100110 9
8 40955 1001111111111011 4 7 64475 1111101111011011 9
notice that two pairs with very smallest hamming distance
hdist(3,6)=1 and hdist(8,5)=2 have ended up adjacent to each other.
*« A problem:

— there is another pair with a low Hamming distance, hdist(4,2)=2 that
have ended up totally apart at other ends of the list...

— sorting only picked up the pairs that differed in their lower order bits.

'rotate’ bits left twice if we sort again by fingerprint
4 3736 0000111010011000 4 3736 0000111010011000

3 10592 0010100101100000 9 2 3739 0000111010011011 2

6 10600 0010100101101000 1 3 10592 0010100101100000 11
119274 0100101101001010 5 6 10600 0010100101101000 1
8 32750 O11111TTIT101110 6 119274 0100101101001010 5
532758 0111111111110110 2 8 32750 0111111111101110 6
23739 0000111010011011 9 532758 0111111111110110 2
761295 1110111101101111 9 761295 1110111101101111 6

this time the (2,4) pair ended up adjacent
we also identified the (3,6) and (5,8) pairs as candidates again

6. Spearman Correlation (SRC)

63.d’

6.1. 253 p = 1 — ———, Hfid,F Rdifference between the two ranks of each

nn —1)

observation; nZ% <number of observations ({F 4t 52408 [7 15

Spearman CorrelationJ{E1E[-1,1])

6.2. Modified Spearman Correlation:

6.2.1. [n] @ 5 iE) spearman correlationfi i T ELE A NS AT = AR 45 B9 L RE A7 {Erank E /7
AR [F (overlap=100%), {H.72 SZFr i UL T overlap AT RE S 2 100% (e.g. A =
[0,m,a,b,c.f,g], B = [s,t,b,c.a,f,u]), X -
ISRINS

6.2.2. fRIITIE: AKX Np' = p * overlap%, IXFERE F] LLRIEp E[-1,1]

* X Hsatyif EA- &3S T2 T1X > modified SRC7Esearch enginel?) 45 F _F 11,
ARERRIE —EAE[-1,1]). M0 BT i X A1 T S SRCHY I e rank BHT M 123455 T,
i hw1 9 & % A rank 58T HE 7 9.

% Example:
Rank List 1 Reduced Lists List 2
1 c T
2 A U
3 F w
4 J F
5 H 7.
6 E H
7 G L
8 B K , s
s] M A
» £ 0 = 50% K/

6.3. Spearman Correlation in search engine: /A= F13% 1§)spearman correlation
FATEE T4 overlap At ME R~ — ETE[-1,1]

% Note: X L 7E 1 Fispearman correlationf f 2| i rank#l & 75)5 A list ' i rank, 1
A2 B @ RO EL H overlap list:Z f5) Frrank

% Example: % 5 FATIM P A RO 52 5 14 H Rl — > query TE 2 7 51 45 5

Google Bing
a a
b f
c z
d y
e X
f g
g w
h v
i e
J u

TRBA 23X Hoverlap/E4/10, X M frank 2 {1-1, 5-9, 6-2, 7-6}, IR LATRIAYA 53 518 {0,-4,4,1}, 7521

p =1 — LOHOHOH) 5 30 (i B S rank#l & FAASE F T i rank)

4*15

7. Information Retrieval

71, B9 LA P #queries, R O BB EHERE S A A AR BB BN
(B SRAEHE FE AU TE M 4% 2 {word: [docl,doc2 ... dock]} (inverted index))

1. Docl

T - 2. Doc2
Rankecb 3. Doc3
Hﬂocumenl j

7.2. IR system 1555

7.2.1. A retrieval model specifies the details of:

7.2.1.1. Document representation (vector of terms)

7.2.1.2. Query representation (vector of terms)

7.2.1.3. Retrieval function (TF-IDF + Similarity)
7.2.2. Determines a notion of relevance (6.2.1.3)

7.2.2.1. Notion can be binary or continuous (i.e. ranked retrieval)
7.2.3. Three major Information Retrieval Models are:

7.2.3.1. Boolean models (set)

7.2.3.2. Vector space models

7.2.3.3. Probabilistic models

7.3. Document & Query representation

7.3.1. DocumentsFl1Queries#B#% % 7~ ik — HEkeywords(aka terms)HJ4E &
7.3.2. EBHE (vocabulary) & — NPT A B kitermAYSE A, FRAV
7.3.3. R EFAT A vectorF -4 documentFlquery
7.3.3.1. Size of V = Dimension
7.3.3.2. DocumentD = (d ,d, ..d), Hrpd 2R 5 term 7E Ui BY AL ER

(weight) /&% /)
Ex ample. Vocabulary consists of 3 terms
T, with weights the coefficients
DI = ZTI + 3T2 + 5T3 There are two documents, D, and
D,; there is one query, Q
D,=3T,+ 7T, + T, 5

=0T, +0T,+ 2T,
0 I = ot dr, + 5Ty

Q=0T,+0T, +2T,

2.3

T

D,=3T,+7T,+ Ty .~

o *Is D, or D, more similar to Q7
o p *How to measure the degree of
T, N similarity? Distance? Angle?

Projection?

* it 5IX S weightlE? — TF-IDF

7.4. TF-IDF

7.4.1. TF-IDFE X : Measure of Word Importance. Item profile for a document = set of
words with highest TF-IDF scores, together with their scores.

£y - , .
7.4.1.1. Term Frequency: TFij = —~— < 1, #17 T —¥normalized

max, f ke

f o frequency of term (feature) i in document (item) j

max, f o maximum occurrences of any term in document j

7.4.1.2. Inverse Document Frequency: IDF = logz(nl)

n = number of docs that mention term i

N = total number of docs

7.4.2. TF-IDF score: Wl,j = TFL,/, X IDFL,

% Example: F: 11422/ document, term wHHLE2 N ducument .,
1. {B % wiEdocument jE HELH R B FT A term B 25 7,

20

A:TF = 1,IDF = log 2—10=10, w =1x10=10
w,j J 22 w,j

2. B wiEdocument i H AR ECHNT, B SCR B H B A 2 Wterm H I 1207k,
1 20

. _ _ 2 _ _ 1 _ 1
ALTF =55 IDF = log, =5 =10, w =% 10 = —

7.4.3. %7€ —query, TR —document) sy #iScore(q, d) = X(TF, x IDF),

t = Set(q) N Set(d)
% Note: in some cases we normalize each tfeidf value using the L2 (sqrt of sum of
squares), as opposed to L1 ((absolute)sum) norm
% A | TF-IDF, Z04a] %158 WLt document 5 N 1Z HE 25 F F'WE? — Cosine

Similarity

7.5. Cosine Similarity

N d,
7.5.1. FCosine SimilarityJ5U Kl : FAl1H vector#e ‘

7~query 3 # document, ‘A1 [H] FOAE{ELE
ok N2 12 2 A T R T) L, R) 6

d,

KHE TR AR EATR 7 A K (degree of

similarity)

t,

7.5.2. FhFERRAsimilarity: qFid; 2 [8] AR {ELEE sk 2 A TR PN AR,

t

7.5.2.1. /Aiﬁsim(dj, q) = dj e qg=Y W W, Hw#Rterm iflldocument jAYAY L,
i=1

ifiiwi A term iflquery < [A] A B2

7.5.2.2. X} Fboolean vectors, NI L Z /R LE query H i) termsE document HH HL HH L T
(aka size of intersection/Hamming distance)

7.5.2.3. % Tweighted term vectors, WA Z 7= I A 25 A HH I A terms B AL T AA

% Example:
< &
A () N
B M S %Q\\\@c Q&Q ‘bo“&\o“o%
mary: ¢ & S o & N

- D=1 1. 1. 0. 1. 1. 0o Sizeofvector=size of vocabulary =7
’ 0 means corresponding term not found in
-Q=1 0,10, 0, 1, 1 document or query

similarity(D, Q) =3 (the inner product)
Weighted:

D, =2T, +3T,+5T, D,=3T,+7T,+ IT,
Q=0T, + 0T, + 2T,

sim(D, , Q) = 2%0 +3*0 + 5*2 =10

sim(D, , Q) = 3%0 + 7¥0 + 1¥2 = 2

7.5.2.4. TFAERY IR SCRY K FE (vector 1 K FE)2 B2 Ml similarity(F17.5.1 09 R AR
)
7.5.3. {#i Cosine Similarity(H *4 T-% T —“>normalization):

§Aix3i
7.53.1. A= :similarity = cos(®) = —22— = =

lAIl11BI] —
A/ @\ [316)

D, =2T, + 3T, + 5T; CosSim(D, , Q) = 10/ \(4+9+25)(0+0+4) = 0.81
D,=3T, + 7T, + IT; CosSim(D,, Q)= 2 /(9+49+1)(0+0+4) = 0.13
Q=0T, + 0T, + 2T,

% Examplel:

D, is 6 times better than D, using cosine similarity but only 5 times better using
inner product.

* Example2: A=[1,2,-1], B=[2,1,1], similarity = cos(4,B) = % ==

7.6. SEFSTF-IDF + Cosine Similarityiifi:

7.6.1. FESCRYEEA DT IETA SCRHD I TF-IDF 2 71 fillvector, d#& 7R 85/ SURY, 44—
MNEEHEV

7.6.2. Ffquery g i TF-IDF# 7R il vector
7.6.3. XN, TR g2 [A] Y score, s, = cosSim(dj, ")

7.6.4. HRHfEscore W R E/ NG SCRYBEATHE
7.6.5. fftop kA SURYHERE 2 FH
% Note: [[8] & 2 FEEO(|V| D)), 24 |V|Fn|D|1E K A I EEAR 18 i ik ? —
preprocessing (X T — N term, FE 5 HE AT LU i s 04 T4 SOR (A
term {5 — P KJE 18 query), 17BE—preferred list — X T — 4 t-term query, HX
Xt termfpreferred listf) 2 5 HEE, 158 — DNHTRIEAS — FES Y EHT RO STRY
H5 117.6)

7.7. TF-IDF + Cosine SimilarityJik 5

7.7.1. Missing semantic information (JCiEEEfR1E X)

7.7.2. Missing syntactic information (JC{£ #1515 e.g. phrase structure, word order,
proximity information)

7.7.3. Assumption of term independence (/245 b W s, Bt & X7 B 2 I S 1Y)

7.7.4. Lacks the control of a Boolean model (e.g. ## %8 —2-term query “A B”, I} Al g
KA—EZEAE IR JE B A2 BB,] DU AR 45 SR SORS B (B AETRATTHY
FAER S E RN RFA, BETUASHEREA, BA HH L2 AR A 2 A SCRY)

8. Text Processing (Classification)
8.1. B

* Given:
— A representation of a document d

+ Issue: how to represent text documents.

» Usually some type of high-dimensional space — bag of words
— A fixed set of classes:
C={c, CcpeunyC)f
* Determine:

— The category of d by generating a classification
function, say y(d)

— We want to build classification functions (“classifiers”).
8.1.1. & 3 faj R Ui gk & 45 E — AN SURYRY A i, FFIX A SURS AT 4328, B RO 5 [HEF
B FEE T mE R H P
8.12. @:
8.1.2.1. Standing Queries: — [EL I A BE 2L query 1 25 B, — HLA 5T SCRY Bl 38 SRS B 8T

EHEDE LA P (R b AR — e/ 260)
8.1.2.2. Spam Filtering: HR 4§ 526 SCAURHE i ide 1 4)4 28 yspam i email (55 4 —
/>email#f AT LR F 1 75 5K 450 2K K —Femail F 3h3E A K folder)
% Example:

“planning
Test language
Data: U proof
R e ______!nlelligence"
(Al) Programming) (HCI)
Classes:
ML Planring | | Semaritics | [Garb.Coll. | | Multiriedia | [GUI
Training learning planning programming garbage
Data: intelligence temporal semantics collection
algorithm reasoning language memory
reinforcement plan proof... optimization
network... language... region...

8.2. Classification Methods

8.2.1. Manual classification: A N4 5 NURLSY K, GORE4EY — K. &
experts ¥ REAR A M1 78 pf 53 38, (R FIUAR QA I e o 1 S0
% Note: X7 1k 5-H Yahoo!$ [H, saty?E iR X} EE T Yahoo! FiGoogle) /57 1.
Google) 7 £k & index{k, REEE 7K, (£ B A B s L5
8.2.2. Hand-coded rule-based classifiers:
8.2.2.1. & ANBIHEHLE RN AT 532K (e.g A0 RAR K B BB A4 & LR 12 1Y
pattern, /K FHBAF L S BENSAFHHE), 2 FH Fnews, governmentfllenterprises.
8.2.2.2. M wi: a0 AT 7 B A VHE Aff 35 b AR s, LIRS e 5 P T D) 8 28— B 2l
AR) E RN 4E B 4T F U 2 R expensive) (19804 A #IL U A TE LT n] BEAR)
8.2.3. Supervised learning:
8.2.3.1. BRI

* Given:
— A document d
— A fixed set of classes:

C={c,cy..., c)f
— A training set D of documents each with a label in C
* Determine:

— A learning method or algorithm which will enable us to
learn a classifier y

— For a test document d, we assign it the class
yd) €C

8.2.3.2. Naive Bayes: 15 & £/ F 01 2 [A] 7% A S (bhan— 7K 2R A weight,
shape, smell % J& M, (H'EA T [0 FA B E J& A AR VA BR A9, k2 /K i)
shape /23 521 & Y smell)
8.2.3.3. K-Nearest Neighbors (KNN): {177 objects{E N 1] &, 1 i fe dr BOK /N A1 511
PR B A9 (KL R ZEUE 00T & e B A RIE A 2 I JR)
8.2.3.4. Support-vector machines(SVM): 7T 5 objects{FE AN AL b s, AR L0 i) 2
AR IE H— N barrier K X3 AT A AR, B brE R T EEHEE TR — 38 71 89 s D
I TEIR—14 (barrier v] DLz B 2R, Hh 28, 8 - i 5, Buk 1280 5 & Fi feature
Hoa)
% Note: [IR Esaty HEKNNFISVMAR & M g 45 2 [n] il (1, (B SEA AT AT L
RZ e, AT RE A b T (#F LAspam email 53 28 A1)
8.2.4. Many commercial systems use a mixture of methods (ensemble learning): 5 1 2 fif
TR B[R] — N object B 1FRIAY 73 2K, SR FE MR 45 45 5 experts4h) 53 b fa Tk
TE X object B T —
8.2.5. Featuref¥ si: Supervised learning classifiers can use any sort of feature (Ff 1~ 7[R+
words. URL, email address, network features#ls #] LL/E N feature)

8.3. Naive Classification representation

I love this movie! It's sweet,
but with satirical humor. The

dialogue is great and the great
adventure scenes are fun.. It

manages to be whimsical and love
romantic while laughing at the —
conventions of the fairy tale —
genre. I would recommend it to
just about anyone. I've seen it recommend
several times, and I'm always

happy to see it again whenever
I have a friend who hasn't seen laugh

it yet.
happy

)=C

Pl 2] o

8.3.1. ITFE: 58— B ih LUs Gt word LR 2L, £ word/E N — /> feature 45 15
TIPS —class
8.3.2. Frai: K HwordlE Nfeature - H.5 > word#B 4 1T (4545 stop words)
8.3.3. nJ:
8.3.3.1. {¥{Enoise: 1R Z stop wordsi*) I H SETE B 5 H & VA B U, (B2 R i
T2
8.3.3.2. AIHE T Hoverfitting: i £ feature 2> T BOEA 5% 5] 21 4R P8 A~ robust
8.3.4. it J5k: Feature Selection (i Zstop words.” /& 2 i most common terms>g)|

8.4. Evaluating Categorization

8.4.1. 5 FMeatures: precision, F1 score, classification accuracy

8.4.1.1. classification accuracy: —, HHn A PIHR SR S5, 953 FIERAR SR 5K

8.5. Naive Bayes

8.5.1. — /N H: SpamAssassin
8.5.1.1. 1 FE: 158 — MR E LA 8 i FE Ll feature I W7 E & — /> spam email 9 A REE
8.5.1.2. Ry si: feature MY PR Twords, i& ffblacklist (244), hand-crafted text pattern
(FF B HE L 25 A6 B (AR 7T HE & spam)
8.5.2. ML
8.5.2.1. Very fast learning and testing ("~ 75 4128 [%)
8.5.2.2. Low storage requirements (Z£ A - H {52 {7 — kR 3K
8.5.2.3. Very good in domains with many equally important features ([X] 4 Naive
Bayes I~ e X feature 8 1 BL BLME X ML

8.5.2.4. More robust to irrelevant features than many learning methods (independent

8.6. Classification using Vector Space

8.6.1. Vector Space:
8.6.1.1. F/N UYL A — vector, £/ component/& — Nterm
8.6.1.2. % 1H UL F AL Bnormalizel AT FE ([B1EI7.5)
8.6.2. AILLySEAYRITTE:
8.6.2.1. I|Z%E Hdocuments in the same class form a contiguous region of space ([fl—
i)documents/~ 2 43 HEUTE 22 8] B B AR KON &, JF B AR HIIR)
8.6.2.2. %4+ documents from different classes don’t overlap much (f/> {F I F 2

H overlap, 15> document[r] i J& T2 /N2 51))
8.6.3. H#x: build surfaces to delineate classes in space
8.6.4. Rocchio Classification (linear classifier)
8.6.4.1. Centroid/A=\:
-) -
u(c) = Y v(d), HH
o],

€D

D& ciX AN KA FT A
documentsfJEE A, v(d) /& K-
documentt) Z2]] & (L
Sk A AT A) A
)75 A1)

8.6.4.2. IHFE: FEANFAIEEL H LAY — 1 centroid, 4 — N HTHY SCRYIE I 4y S I (65,
BV E R A centroids 2 [7] Y &, 1% FEnearest I HE > — /> centroid X N 1
class{E AKX D SCRY A class (R0FL1A A I B AR % gk [E] i R T2 25)

8.6.4.3. Fyxi:

e TEtext classification R AR 4, (B2 2 Fh AR ARV, B K EkNaive Bayes
7=

e Cheap to train and test documents

e It does not guarantee that classifications are consistent with the given training
data
8.6.5. KNN (non-linear classifier)
8.6.5.1. I HE: AR SCRYMEN — A1) &, — TR STRYE SR I £ H B iR T KA 4
JE AT B R, 15 2 2 H class {E 8T SCRY B class (AL BRI kA A7 45 1 S
L, I —E T kR R T2 9K)
8.6.5.2. i

e C(Case-based, Memory-based learning

e Lazy learning (f5:7k X 75 221t Hi distance; no need for training)

* 33V Exam A (saty BIRBE): CNEATA BN AR @ -)+ 0, -5
FERAF B — A BT SORY st T T R KIRIZ AN A, A2 ik T LR
ey 2

> EGATHRAR S R IRA e o P T AN R B AR X B,
BRSO (A Rk, — MRS REE 2D IHA]?)

e No feature selection necessary

https://drive.google.com/file/d/11E81-JZLm_PwgguJLIC4rH2WxAuD5Ysp/view?usp=share_link
https://drive.google.com/file/d/11E81-JZLm_PwgguJLIC4rH2WxAuD5Ysp/view?usp=share_link

e No training necessary
e Xf Tlarge number of classesfE 1R 4 Hihandle
e Small changes to one class can affect other classes
e Very expensive at test time (&5 i1)
e In most cases accuracy > Naive Bayes and Rocchio
8.6.5.3. WM EFTHESAH: contiguity hypothesis (Documents in the same class form a
contiguous region and regions of different classes do not overlap. i 1.8.6.2)
* R B T R JE contiguity hypothesisf 1% /8 2. 77? — Fikernel
trick " & 1F 5% 4.4 &£ 48 i contiguity hypothesis

© o
o © o - Decision surface
° o m =_m L) =
° o =
oo E'E gm®E kernel
o " gm ©
o W mmm o _—
o "mEm ®m
© “ogEg W ©°o
o ol o (o] o 0
0 e 008 ® 006 99598 0508 B g
° Jo %8 0 000039
® % . =28 0p0, %2>
ooc 0 o

* WSS EI A 5E I Kkernel function/E 2. 77? — neural network (fH/5
ZH&)
8.6.6. XTLLKNNFIRocchiofEpolymorphic categoriesf %R
8.6.6.1. Polymorphic Categories: 227517725 (@: X FRA — P blogie X T HRITHY,
A& AEIX 4 blog Hi Bk RS 57 B (R FE AT 2 iR A Tk B W Y 36 &, R4 IX A blog bV
IR AIRAT , S5 £, T AS 5 e — N
* N1t/ Rocchioffpolymorphic categories %7 43 4? — Rocchio A i 41
FEAS R A AT A A ARERIE & B T4 — AN, MfifRde T AN IREERAE, FoAi]
5] 518.6.4.2H N %Y, HATE— 1 docE| % > centroid 1 i 5 5E 2 FH 25 I 3
T WA dockd T2 41, X MR R AR
* N1t/ KNN7Epolymorphic categories 2% [l Rocchio, Naive Bayes#l 412
— KNNASJR _E AR G AR [8BRS, $ B0 B 2B kDA, K
FHA S — 1 polygon He it ik £ A

8.7. Bias-Variance Tradeoff ()73 Exam/@l H Why have to tradeoff???)

8.7.1. KNN has high variance and low bias
8.7.2. Rocchio/Naive Bayes has low variance and high bias
8.7.3. =X Ff#BaisH Variance:
8.7.3.1. Biasfim 7= & NIME G- Sk br L EME A AEAE. AR5 — TR AT LAZ YE &) dt e

R F: A URMCER — BT RO BAE A T8 D o3 A, B — BT RO AL,
TR A REALIE, BT 520X L BRLR BA — R A TINAE. R 725t /2
i B R B AR A FN A L L TE R O R 7.

8.7.3.2. Variance 7 75 /& 45 iE BhE OB TN O B S . AR RARR — AR AT LIS K
HE AR R, 5 7R AN R A FR0 25 SR T — AN [E AR b 2
D

Low Variance High Variance

(o))
(Ofc,

8.7.3.3. LL bmix /N~ B N RO LL 0o B, — S Ak ER T — .
o IR —MEIRIHKMRZFK T 22 (/e b)), IR FLTE 0 45 TE B 48 A4~
53 B, SRR A 22 A~ 2 H 88T IE i A
o IR —ANEIAIRAR R & 7 2 L), BTG AN R R AR o ik 2
P32 E B 5y BB 05 B 4 3 TR A 1 9 TR
o IR —MEIA SR ARG Z(E T), ARG R R BHRER 7t
PRI b AR T (B2 0 B A b Bz B9 RO
o MR —ABIA SR AT G T2 T), I8 Fels AR R o k2=
P LI Sy i BT i 1 i B b sz i Pl A
8.7.3.4. IR LAy AT, B i Af BOBRY 2 RF & BAT IRl 22 R 7 722 R . B
AU EIS? — K17,
* A A RE R N IR R 22 AR T 752
o TEMLERT: 2], high biasE Wk & IR A 7 B ER A B SL /5 A0 FF A, X2 —
ik 1 5 underfitting (high bias — underfitting)
e [fThigh variance = WAL L 3 T —#0 /0 BAR A /0 A0 Fr s, X2 — i
il overfitting (high variance — overfitting)
o HP a0 REATII SR80 B S B AT G Sr A AR) o AT R AR, AR B
Y 2 25 BE 8 5 ik e A BIMEC R 72 R 5 72, (B SE Y EE BA A R A noise,

Low Bias

High Bias

I H 721R Znoise. [K] I i & 4% 8 pOARLGE B R 25 B I8 21 Gnoise, 24 SRk
&% T high variance
o HH LR[S, PSS B ANEE T3] R 50 B 24 ARG Bias /), M
77 7= (Variance) = HE N, EATT I IEA% K. IR A BE R B EAT, X — &
Bias-Variance Tradeoffr) E:fifl
8.7.3.5. Ak, — M IEEEEE -, #AR, IR E 5t 7T A4 low varianceFfhigh bias;

Kz, — AN REIEBEE MR, 38 E Bk 7T A5/ high variancefllow bias
% Examplel: Bias. 737 F £ VE R (£2) FnFE LR ME R) 3L & 2 FE LR MEA Y 2548
. G UL T 2R AN B FE LR R R A, TR BiasiR K.

;\\\-\ '

/

% Example2: Variance. 77 7 F 28 £ [B1 V3 (Z2) R FE LR MR B H) LA B FE 2R AR Y
AR o iR AE. 45 U T A EALS T 8 4%, S EAEA R AEARERE o F
HIFL Al 28 22 AR K, [K H Variance/R K. A2 LLA 1A 56 — 1T EARE A 2646,
A5 ZATHY AR N INREE, 82 B — AT RO Hh Ze sk A A BT AE AT, 3K I i

Bk & overfitting
14 L]
P 10 /
s ™ L
” S /
. —_—_‘_—_‘_‘——-—._._,_ 5
L /
1] ; - BE e .~
0 l fi g 10 12 I 2 | (il B] 1
13 * L]
- — Lo f\/
w4 * ____ _ — - e
= s d
L3 [] o
a C50 1 . T
1] 2 1 fi A 10 1 1] 2 i [B 10 12
1 ¥ /
LA 10 1
—v—a__
1 * "]
2 . ' - T — —
(1] 2 | LI B 10 12 1] 2 4 [L 1E I
P=1 P=5

8.7.3.6. Bias-Variance Tradeofftli £&. T A1/ H #5mk &+ 2 optimal balanceffi total error
i/, I/ biasFnid /) variance A JE TR AT AR EE Y

Optimal Balance

Variance

% Is there a learning method that is optimal for all text classification problems? — No!
ARV)) AR AN [R], 75 22 4E BiasFl Variance H it i tradeoffth 4~ [7]. The
BEST way is to combine different methods!

232 SRR W 52855 58): WTE s the Bias-Variance Tradeoff? (Infographic)
2 E k202 L 52 ¥ 52): Understanding the Bias-Variance Tradeoff
Inverted indexing

9.1. EX:
9.1.1. 4E¥'—dictionary, H Hkey &term, valueit /&2l & A 1X M termFT A docs.

9.1.2. ZpTLhiInverted index & H T X 5l forward index (B[1E & 15 (¢ T & LhdocsE A
key K 4t T A [A] 1] 7R 3X N docs FL HH B 2k £50)

9.2. X5/5: Terms in the inverted file index are refined

9.2.1. Case folding: converting all uppercase letters to lowercase (FTH K54 /N E)
9.2.2. Stemming: reducing words to their morphological roots (T4 1a] 2 i& J5UA A AR)

9.2.3. Stop words: removing words that are so common they provide no information (! T 5

R UL, you, me... DA ¥ i Y 25)

https://elitedatascience.com/bias-variance-tradeoff
http://scott.fortmann-roe.com/docs/BiasVariance.html

9.3. ZMEIREHH 1 @ED)

j-th document, term frequency

Document frequency ‘?,’__,...——‘
N D, tf;
Index terms df
computer 3 __.l D, 4 ‘
database 2 — | D, 3 ‘ |
L N
science 4 > Dy, 4
system 1] ID-:—AE‘
Index file Postings lists

9.3.1. Index file: f8%% N inverted indexFH {E— dictionary, #iZ.index fileft /&dictionary
fkey, {H.[A] I index file A & & — N (key, value) I FE
9.3.1.1. £/ termXf N — P IDF(Inverse Document Frequency, 3% 7~ & 1X /N 1] #Y SCRY
—HH LN, LR Y AT S term X B 1 postings listf) 1 &)
9.3.1.2. Index fileff £ 7#Ememory ™, H pointersfii 7] postings lists
9.3.1.3. Index filefJterms & % [alphabetically M /> 2] J\‘TJFV
9.3.2. Postings lists: £/ postings list/& — /> 7¢ (link-list), TCRAFAME, — MEXT
i) termfJdocument ID, 75 — /& TF(Term Frequency, 7.4.1.1)
9.3.2.1. Posting lists# FRAF1Edisk 1, % document ID M /)N K7
* —PARK—FEHExample: 7£1X > @ B R A FE— /> document, POSREE T termfE 3¢
F4 R AOAL E, BT LU 2K I P key st /& term, 1fivalue 8 p% T X B termfEdocument -
ij)mu%ﬁﬁ%/\ BIRE LR R S KR AR AR EAR A

% Note: X B A /I] gk H S positionFlpositions N 1% #7 A A& — S term, [FIFER]
word fllwords i N 1% 4%\ A f&— M term

1 A file is a list of words by position
10 First entry is the word in pesition 1 (first word) —

2 Entry 4562 is the word in position 4562 (4562" word)

Last entry is the last word

An inverted file is a list of positions by word!

a1, 4, 40)
entry (11, 20, 31)

file (2, 38)

list (5, 41)

position (9, 16, 26) /
positions (44)

word (14, 19, 24, 29, 35, 45)

words (7)

4562 (21, 27)

| The resulting INVERTED File

9.4. Inverted indexing#bE— > query it

% Example: % % T i query /& which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia (3 E1X N query -~ & EIEFR A WA, g
— B FIRM L)
9.4.1. Naive Solution:
9.4.1.1. J7{%: AT A & BrutusF1Caesarf)Shakespeare plays5& i fifi i il I 6 A

mercy

FPARRIEONLE SR AT EIRE

tert

Calpurniaf?y

9.4.1.2. [f: too slow; needs large space; doesn’t allow for other operationsE[l - AE4]
XX —/>query

9.4.2. Term-Document Incidence Matrix:

9.4.2.1. Fik: 4e47— DNOVFEE TR R dM—y) e Shopte s By Tt pee o e
WL termE M LEdocument . HY - : : . Lo
BUT, R AR R R G 1 Ce e

1 S

G Lt #)query N, (35

%?j}%llﬁlﬂﬂ AND 110111 Brutus AND Caesar but NOT Calpurnia 1if contains

word, 0 otherwise
AND (NOT 010000) =100100,
Hl1“Antony and Cleopatra” i “Hamlet” /275 & 3R A0 45 &)
9.42.2. [a]fll: EIRGE RIS IEMRY H 7] LI 35 Hoffiquery, {HJ& M L IRTHDERRFE /T LR HY
HARZ HORINL, IXELofr B8 [& 72 [H] (HIX /N [FF /& sparse matrix)
9.4.3. Inverted index with Link-list(SZ 5 bt & 9.3/ f7):
9.4.3.1. FLALEH):

Brutus| > 16-{32 [-{64 |- 128
Calpurnia |~ 13 {2134

Caesar| ©——> |13 [~16

Dictionary Postings

. B Caesar | was killed Caesar. The noble
HEL T PR R o e R A T i" the Capitol; Brutus hath told you
Brutus killed me. | |Caesar was ambitious

:
:

Copyright Ellis Horowitz, 2011-2013 12

 ——

9.4.3.2. %—7: Extract words (It USC Viterbi
L o Sehoo o Engineering Inverted Index
B NdochHItermBRHE B H

» Documents are parsed to extract words Tom et

3k, 3f H. LA (term, doc ID) and these are saved with the document & ;

. . ID i.e a sequence of (Modified token, — :

W7 e — DR B X Document ID) pairs i ;

AN N nmer Doc 1 Doc 2 G

1A {Jterm I did enact Julius So let it be with 3

:

Jofen Nova= Term Doc # Term_iDoc #
9.4.3.3. % 7 Sorted terms (fFFT + ifthe corpus is known in 5 1 ™" 3
- . advance, then after all e ; ot 2
caesar 1 capitol 1
ﬁtermsﬁz 't alphabeticall documents have been parsed the : 2:5::: !
inverted file is sorted by terms <= ! cacsar 2
order M\ /B K BEFE, LS Y R e —
captol e]
prue 1 Refinedfistof ! 1
SRASE= T-{if By merge Efd i tems ; 1
1)3 o T i g ,fm,f {T E/j g Initial capture of terms fet E ﬁ:z"us 3
=) be 2 k:llzd 1
El‘%%ﬁz) * However, on the WWW, :‘" % E‘Ld %
documents are constantly being . 2 = :
added and the terms are o 2 e 2
. . you 2 told 2
constantly increasing caosar 2 you 2
= i :
Copyright Ellis Horowitz, 2011-2013 13
Sofs — .
9.4.3.4. % —7/: merge single
= USC Viterbi
document (‘,{“_‘]'. Ia — /I\ jc*‘é’l E/J School of Engineering
oo Tom Dot e

[Fl—~ termiﬁﬁ‘merge, 17 » Multiple term entries in a
single document are

1:% EF' i@i][l *EBEE% merged.

» Frequency information is

NN NN AN S I N TN N W IRV R

added. ! 3
s e

s)

{-} Kted e

Why frequency? :mz‘;e e

Wil discuss later. e o

told =

o o

frequency)

9.4.3.5. DU : merge multiple

* The file is commonly split into a Dictionary and a Postings file

Doc# Freq

documents (fftermsift—F woes

merge, K T fc 4409

:
dictionaryf3. AR/ =
FOEL 5 fsindex file, A1 :

:

i3

postings lists. iX — potie

AN aaNSSa AN AR AN s wan s

AL,

SERE SR T9.43.1HH =
)

1 1 5 1 Y 6 N 1Y IS I I O I R I N

11 1 4 5 O g O N O O N N BN Y 1S

/R

Copyright Ellis Horowitz, 2011-2013

* At 2 Link-listifl A~ array R 4547 WE? (Rl array Filink-listAI A0 ik 545 211 20)
g
> Array pros:
>.1. randomly access to any element
> Array cons:
>.1. fixed memory (partially correct, not fixed in JS);
> 2. difficult to insert new or delete a middle element;
>3. Operating system has to find a block of memory all next to each
other, if the memory is too fragmented, it’s hard to find a continuous
block of memory (5245 1% 411922 [H])
> Link-list pros:
>.1. Easy insert or delete a middle element;
>.2. Can distribute the data anywhere in the memory, just need pointers
to point to each other (do not need a continuous block 5 %% 1% 45)
> Link-list cons:
>.1. Can only follow the order to access elements (211 51 FH 9 3 4% 5
circular linked list, 7] LA Sk 835 MR TF 4607 9], 75 00 SLUAE M Sk 17 1))
* 1% E 4 St link-list) AR 2 WE? — Skip Pointers! ({H 2= FBI{# A T skip
pointers, link-list{/’ X (%~ £|randomly access)
9.4.4. Skip Pointers

9.4.4.1. 1E 7 link-listf5 2 fic 28 45 B = /Mink-listAR 5 4 M /N2 K7 735 Tmerge
(FEnTE X Bt /& Caesar /¢ FliBrutus &5 3, & 3 H A list FFFl Calpurnia & 4521
JE ISR, B B2 EIFE R % mergef) & 2% £ & O(m+n) (m, n%3 jl] /&
PR AN listA K

w——">[2 14] 8116] 32] 641128]]
| Calpurnia |"——>[1 1 21 31518 [16 21 34
w——>[3 16 [T T T T]

Query: Brutus AND Calpurnia AND Caesar
* AT B M NEIRPERF? — 18 s R (beanix B an R
Brutus4¢ fliCalpurnia & 3, 15211 list/&[2,8,16], S8 /5 H FliCaesar& 7, Ba &
REL=T+8+3+2=15+5=20; 41K Brutus’c FiCaesar& 7, 1+ 2 M liste[16], X5
- FiCalpurnia® I, HSEH R E=7+2+1+8=9+9=18)
* At 75 2 SKip Pointers? — LA B E NI, (R FATIEZE S FFBrutusfh
Calpurnia, 7+ HEATE 45T b B 16, 16 7. el Brutusff F—/ 232, FAl15%
FE Calpurnia . — > — /N j 0] 16 /5 I 1 T 38 6 A 1% A 32, (2 341 T6E
UL HA S (B array P 4RF 5, BV AT LABKAS U7 in] Je 58, 5k AT LAHE B B R AT RE A7 AE32
A DX A Bk A4 TR T
9.4.4.2. Skip PointersZE #4): 8 /M link-list?) 73 5 A5 -0 40, #7 & pointersiZE £ 1X LE 0
53 (FEYS TSR thakiimaE, T EAB S & [express)
ml J3o]Exeress Lane~,,

57 167
FL‘(J_I—1|20H22H23H27 30 43H45H50H54}—;—4SSHSBHGZHGSI—Eﬂ

Normal Lane

* ELBNEER? — RATAEREEE AN link-list/) B /nf, Bi50 F O n) 22]
F: O(/n), H HFnMlink-listk: 4

e

9.4.4.3. Skip Pointers?r] & 4%

il === W A, A~ =, 11 A hn
0 S anya=

R85 R = I — rﬁh/ﬁj‘bﬁiﬁ#jnn A}

i 2 NDZ A | 2 uziS B ARy

% Example: [R5 FAT T —NAEEAYZ FHEPI32, N A TEESHINLE. T LIS
Ab A skip pointers EI8%T M AYE31, MMi31b632/0N, FLIX BLA Fy-. AT LAFRATT AT LAE £21Bk
i 17->21->3 11X AN EB Sy

A\WARLI2419}

https://lotabout.me/2018/skip-list/

8 (16 32 64 {128

58117 121 1 31

9.5. Phrase Queries

9.5.1. [N EFATS i querylEN— > phrase £ £], A 1R 22 E fE 14l term
FF2R 57 mlAt N HY, TR R A IS géphrase A 47 71 B9 & S (5l finstanford university)
9.5.2. Solutionl: N-grams (52t 5t /& N-shingle). iX B/ 48 Biword (2-gram): 5/ /> 7%
1 ywordsFE A — /> dictionary term
9.5.2.1. Biwords will cause an explosion in the vocabulary database (1R 4 Zii#)
9.5.2.2. Queries longer than 2 words will have to be broken into biword segments
% Example: Query: “stanford university palo alto” X} W) Biwordst /& {stanford
university, university palo, palo alto}
9.5.2.3. =X1EMARZ false positive (IR 2% 45 R 2381 7 biwords{H & A 073 525 B query)
9.5.2.4. N-grams#{if Zipf distribution (B[1f7& i) 3 <787 H11R 2 n-word-term)
frequency#f 2 i 7l EX)
* SUREEETRESE): TR E I M term K FOLE W 25 H 7 HH BT == 1)
Hi 28, AT DLUR IVEFOFRAT i R i) ZiptH S T AR A, A1 ? — R R
AR, N NWCNFNE S FAH %, 51140148 5% ceramics comes from, 3 serve as
the inspiration. t 7] A8 /& term K AN REHEMA TR H P AO18 SR TR, 1 H
1 SONE SRR ST 52— A)1, M — N EIEEE JL M nounE A H O
query

25% 1
Plus words

—+—Gamma distribution

20% -

15% +

Frequency

._.
2
£

5% A

0%
0 5 10 15 20
Word Length

https://plus.maths.org/content/mystery-zipf

9.5.3. Solution2: Positional Indexes(9.3/") @ .4 7T /R): £/ MtermfEXS B doc IDZ fii
A7 MLER B, FRX MermfEIX 4> doc L LE A7 & H B T .

% Example: 55341 T “to be”. 1X B FLntor2:1,17... "R/~ Wyt & 1E 21X [N doc
1N, 517N s to. BT RAAN R FkA 1 toFbe AR AL — 4> SCRY W IF H A 7 LE
positional indextH 4 A1 I it 1d B X A SCRY BLHL B T Fe A 12 A phrase

— to:

o 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
— be:

e 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

9.5.4. Solution3: Biword + part-of-speech-tagging (1] £ /3 4T): 5 H 1Al 14 40 #7152 query
HH BT A BE] TR M, B E nounsi#E 1T biwords i) & B[] B solution] (F& T ik
“nouns and noun phraseZ? & H 3L H. 5 REALRE 1 P 10 FE)
% Example: {i % query & “renegotiation of the constitution”, £ 1 18] P53 41 & B B 4 /&
N X X N (XfXZpreposition, NfXFnoun). K FeA 15k 52 T biword “renegotiation

constitution”

% Note: part-of-speech-tagging I #2 /7 7 L it statistical 8 rule-based Y 57 12 Il 25 HH >k

9.6—DPistributedIndexing i MapReduee (Z 5= YY)

9.7. Dynamic indexing

9.7.1. [r)#: 2 Hiit iR inverted index# & 7E LR R AL HIIE DL T, {HL72 B SEAETE H R
A B g S5t P RE AN B A E AR b, FEZEL4E — >3 A Hindex
9.7.2. JFik: 4y — /N KAmain indexf1— /)M auxiliary index.
9.7.2.1. & X: main indexfH 4 T F 548 FE, auxiliary indexfH 4 T — AN/ NUSE E, 47
fEmemory .
9.7.2.2. AriftFE: 7E— BRI N, HrUdocs 2 e 7 1 auxiliary index B X I 1 45—
query, F A1 7Emain indexfllauxiliary index 1 #f 25 £ 1), 152 4>
link-list, XX 7 M link-list FFmerge — Vgt £S5 2 T fc & 45 FH P 45 3.
9.7.2.3. fFid— /B a] B, Fedl 1 auxiliary index B /9PN A # 4 # 2main index
K SURE B (FTRER®B): (sl A MIBREE D doc? — Fefl 4B ZE BRI doe ID
ARFNTE— B 4E 47 5 — /> bit-vector, 7£9.7.2.2 L1551 fr £ 45 B 5 FniX S vector
FEHEAT— R merge K filter AR LEiH B3 5 B9 SCRY (Deletions are stored in an
invalidation bit vector. We can then filter out deleted documents before returning

the search result. Documents are updated by deleting and re-inserting them.)

https://en.wikipedia.org/wiki/Part-of-speech_tagging

10.

> ¥ J%: KNN with Inverted Index(F| Hinverted index25 KNN I): 1321 — Pquery/&, T H

Inverted indexingf5 2| —2Ecandidate does, 7A 5 8 query 24 % — Mtest document, [fii candidate
docsit & train documents. H M FIKNNGEE PL i 15 218201 query A2 2L AF2 i) does il /7. Testing
Time: O(B | V |), HHBJE—test-document words7E training documents ' H L -4k 3K, V .

J&test documentf¥Jvocabulary. 18 7 15 1. T B<<3CFY %X

Video Search Engines

10.1. How to index a video into database? — Metadata

10.1.1. Author, title, creation date, duration, coding quality, tags, description

10.1.2. Other aspects of video recognition are subtitles and transcription

10.2. How to rank a video (or sort videos)?

10.2.1. Relevance: using metadata and user preferences
10.2.2. Ordered by date of upload
10.2.3. Ordered by number of views
10.2.4. Ordered by duration
10.2.5. Ordered by user rating
% Note: /7 7] LLi%k #Esort by which, 41574 % 5) £ 5% 4N [3 TR — P weight,
B HH—/Minal ranking (/R 18 BRI AR

10.3. YouTube Recommendation System (H[)YouTubeZl{i[£/ ¥ % videoZs H /)
10.3.1. Association Rule Mining: 75— X # 5 , vj), relatednessZA 7 r(v, v}_) = Tj’;,
)
/E\:EF'C. .2@%%ﬂ%ﬁi*ﬂj%ﬂico—watohedﬁ"]YK%C, Cﬁ%%i‘ﬂﬁi?ﬂiiﬂ%ﬁ@ﬁﬁ, ci%ﬂ??)”u*ﬁﬁj

B E IR ER, fw, U)E “Pnormalization function (e.g. f(v, v) =c*c)

J

10.3.2. YHPME T — DA, systemit 28310 10.3.1 5 B9 A0 E H T A E AN
Z [A]relatedness, %H}\}\j(EU/J\EFT?, B Ja ik FtopkHE 25 H

10.4. Two Technology Challenges for YouTube

10.4.1. How to identify billions of videos? — YouTubeH [i€ K FE 11\ string ¥ /E Fvideo
ID (— 7] Llidentify (26+26+10)" /LA, /58] — NETHIMANZ 5, RF = EHLL
BBl — N Bstring{F yvideo ID, 2 [5% G 2 571X N DAE database L A7 A

{FTE, A0 SRATAEBE BT REALSS — 4> LI W string, (BB IDAF/EE & . EIDEINE]
videoXJ W FJURLE] (e.g. https://www.youtube.com/watch?v=gocwRvLhDf8)
10.4.1.1. How to efficiently deliver the video

to the desktop/mobile device? — i

AR ISR
CDN (Content BEARRE > B PR
. ARRENETE S

HREDNSHTIRAT

Delivery/Distribution Networks).
] B R U & I 2% = AT FH Y Y
TP HARYE FH P HOTP itk 5 il —

U5 ERIP

AR S T e o

WOV (LR TE AL SR — A “'f

youtube HIHLAN, youtubest 2= £k AEMNARR
HREERER

SRR T IR S 22, i

50 R 5 B LU B R

k)

10.5. YouTubeZl{i#]#rvideo duplication (R Z1{7 44 copyright)? — ContentID

10.5.1. ContentID: a fingerprint database of copyrighted content. £/ FLAIAR 2 #% YouTube
PPN, 1]) EURE (sampling) 2 J& A BE 5 — /> spectrogram. 98 /5 spectrogram
S Whash. 2 f5 _EAERIRLAH 2152 — 1 hash value, 21151X >hash valueFldatabase
9 hash valuefRE230T, ARk 2RI T 5 /ERL
% Note: iX . #Jhash functionZ i F SimHash(5.5), t 5t & PN & 882 0T B A0 S A5 21 1Y)
hashf{i 5 #2301

*__ What new discoveries from the James Space Webb Telescope can | tell my 9 year old about?

Your 9-year old might like these recent discoveries made by The James Webb Space Telescope
(JWST):

+ In 2023, The JWST discovered a number of galaxies nicknamed "green peas.” They were given
this name because they are small and round, like peas.

» The telescope captured images of galaxies that are over 13 billion years old. This means that
the light from these galaxies has been traveling for over 13 billion years to reach us.

+ JWST took the very first pictures of a planet outside of our own solar system. These distant
worlds are called "exoplanets”. Exo means “from outside”.

These discoveries can spark a child's imagination about the infinite wonders of the universe

|G || @ || v Checkit H

11. Query formulation

11.1.

11.2.

11.2.1.
11.2.2.

11.2.3.

11.2.4.

) 788 s A% G0 48 53 T 1 A B B 7 3%k £ 1) query (@: 1% 52 Apple AND orchard

NOT computer & #83515 8 R G4 computer) 45 5%, (B 248 52 5 [T 1] Wrand Fn

not & query) — 3 73 ik 2 I T 5 1)

Google 117 53K ER R TiIEE B

Default ({2 #5A01): & 7RANDZ3X 3 (e.g. Apple orchard = Apple AND orchard)
Quotes (“”5| 5): #3Kexact phrase (e.g. “Apple orchard” A £ & /R 529841 & Apple
orchardiX /™71 H 45 5%)

NOT (-8 75): 3K~ 2 (e.g. Apple -computerft A~ 2 i [F] computerfH < Happler™
fi)

Square bracket ([£575):

11.2.4.1. 323K B B VCECAH{EL #.95] (e.g. [child bicycle] 2 f5EIE) & “child”, “children”,

L Yiviny

“children’s”, “bicycles”, “bicycling” % 45 5%)

11.2.4.2. FKAE DL stop word (e.g. [the who ik A~ 2 4 theFlwho X4 /Estop word — /&

11.2.5.

11.2.6.

11.2.7.

11.2.8.

11.2.9.

11.2.10.
11.2.11.
11.2.12.
11.2.13.
11.2.14.

{8 %% the wholt) 45 5%)
OR (80): A or B KK RIPEEL AR 25 R # PEECBAYZE 2R (e.g. Apple OR PenZx 15
FF1Apple i RAYEE R, WA GEFPenf RAVE, AL, HAS15E] Apple PenfY 4 L)
Connect (+/11/5") and Anyword (* /£ 5): (e.g. it’s +a * world ' 2 Ff+f5 fJa X4 /E1E 7
B3] T A s stop word R4, T * 2 IR [FHTAR 7 Sra “somewords” worldJ 45 2R)
filetype: </~ A8 55 J7 BN — R SUEBY S5 & (e.g. filetype:pdf appleft H 23 i [F]
applest J i pdf L)
inanchor: I [F]F4 f&) 7 anchor textf5 [AW U1 (e.g. restaurants inanchor:gourmetiX
[B] 1 S W L H & A restaurants - H #% — 2 anchor text™ & A gourmetH [UL 5] 1Y
W UL (anchor textigh /& B2 _E B9 SCF, FLANGOOGLE))
intexts I [A].0 20 B 0T B SC T EL B query I T T (e.g. 18 SR youtube.com A~ 23 3 [H]
link B3 7 youtube.com P [UL, 1 42 I [A] [U1 L body text youtube.comHJ % I1)
intitle: U [E] R 5T A @ L 60 55 48 2R query A [T
inurl: X [Eurl /81 & query I 1T
site: F[A]HLE I 4, B N TG (e.g. site:usc.comt A 2 i [Flusc.com B B 1)
info: k[google % T8 5 query {5 B, (e.g. ¥ FRinfo:applepieit 23 S i [Flrecipe)
FM R BT 55 (e.g. @7 71Rsocial network; $7¢7Rprice)

http://www.google.com

11.3. Google A)query rules

11.3.1. Queryfy EFR K R 432/ words

11.3.2. &5 FElquery Hwords(Z & i B2 T 45 3 (e.g. snake grassiX[A]fY) & plants; snake
in the grassiX[A]) /& sneaky people) (A~ H] i 1])

11.3.3. =itk Elquery Fwordslil 7 A~ A2 25 2 (e.g. Apple watchil [BIF) 2 R R FFR 1M
A& watch apple)

11.3.4. #HERE KNG (e.g. NEWSFInews e — P45 R

11.3.5. 2 AZhRME L5 (eg. ! ?))

11.4. Relevance Feedback & Query Expansion

11.4.1. Relevance Feedback: H /" 18 5% T queryZ Jii Googleidh = HE 77 25 AT TAE LU query
i (PR 5R)
11.4.2. Auto—Completion'ﬁHF*ﬂl?lGoogleé*ﬂlﬁ‘?ﬂ%)ﬂ?l\/\ﬂﬁﬂ‘lﬁfﬁﬁ*\aﬁﬂﬁ’ﬂquery
% Note: 1X B/ H BB RSS2 T8, B 32/ queryBE 19 I+ &
HE B4 SRR TE Y (18 SR8 22 BB S HE 45
11.4.3. Spelling Correction: 27 F ' i A query [U BF 5485 15 FEHE T B A P i ml e AR

A query

	CSCI572_Note

